Surgeon entrepreneur: Dr. Kern Singh’s quest to make lateral spine surgery more accessible

Surgeon entrepreneur: Dr. Kern Singh’s quest to make lateral spine surgery more accessible

NuVasive dominates the lateral spine market with Medtronic being a distant second. Kern Singh, MD, and his colleagues with Avaz Surgical are trying to level the playing field with new technology focused on quantitative imaging.

The Next generation of Neuromonitoring technology
Current EMG-based neural monitoring technology has limitations. Patient comorbidities and anesthetic agents affect EMG monitoring thereby potentially increasing the risk of neural injuries with lateral-based procedures.

Dr. Singh and his partners founded Avaz Surgical in 2010 to help develop the next generation of neural guidance and quantitative imaging techniques. The company has been privately funded along with contributions from Sachin Gupta, co-founder, investor and biomedical engineer of SPG Capital.

The Avaz imaging technology is designed to be the size of a pencil—around the same dimensions as the dilators currently being used for minimally invasive tubular surgery. The Avaz technology is hardware agnostic and runs an algorithm in real time to highlight the nerve and vascular structures for the surgeon by outlining its presence, detailing the structures’ distance from the probe in millimeters and by providing an audible feedback.

Surgeons hear a beeping as they move closer to the nerve and blood vessel similar to the noise you hear when you put your car into reverse. “The surgeon can either use the visual feedback or he can rely on the audible feedback never looking away from the surgical field”, says Dr. Singh.

Current EMG technology has an 85 percent true detection rate and a 20 percent false positive detection rate due to patient comorbidities and anesthetic agents. However, the Avaz quantitative imaging technology has demonstrated a positive detection rate of greater than 99 percent in the animal testing. Furthermore, EMG does not have the ability to provide real-time feedback regarding nearby life-threatening blood vessels.

The physical characteristics of the Avaz technology are also advantageous. The processor is the size of an iPhone for easy mobility. The screen depicts the nerve and blood vessel detection, and tells the surgeon how many millimeters he is away from the undesired structure. The surgeon can move the probe around thereby avoiding the nerve and blood vessel while a flashing color display and audible beeping delineates the safe path.

Read More

Share this post